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2 <o’ Abstract

Dense-Yet-Separated Random Point Clouds for Meshing and More

Computational geometry is interesting to me because it combines both discrete
and continuous objects, and both math and algorithms. | also like it because | can
draw pictures to understand what I'm doing. Specifically I'll talk about the work
we've done over the past couple of years on point clouds with random positions.
We made up the term separated-yet-dense to describe sets of sample points such
that no two points of the set are too close to one another, but any other point of
the domain is close to some sample point. Computer Graphics has been obsessed
with a particular way of generating these kind of point clouds, by selecting points
sequentially and spatially uniformly at random. This way is important because it
avoids visual artifacts in texture synthesis. Computational Geometry has been
obsessed with a different way of generating these kinds of point clouds, by
selecting them sequentially and deterministically, by selecting the domain point
that is furthest away from the point cloud so far. Nearby points are attached
together to generate a finite element mesh. The advantage of this approach is it is
faster, and is easier to analyze. We've been coming up with algorithms that
combine features of both approaches. Some have theory guarantees, and some
are simpler and work better in practice. We have both computer graphics and
mesh generation applications, and we've even started using random lines to
efficiently solve some uncertainty quantification problems.

Sandia
r“‘ National
Laboratories




o /

<o> Outline

 What is Maximal Poisson Disk Sampling MPS?
— Graphics stippling and texture synthesis use

* Polygonal approximation algorithm (paper1)
— Something provable

* Eurographics algorithm (paper2)
— Simpler, better in practice, scales to high dim

* Define mesh, Delaunay triangulation, Voronoi
diagram

* MPS for triangle meshing (paper3)

 MPS for dual Voronoi meshing (paper4)

 Variable radius, space and time

* Darts, QMU, ... won’t get to
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Maximal Poisson-Disk Sampling

* What is MPS?
— Dart-throwing
— Insert random points into a domain, build set X

Empty disk:

Bias-free:

Maximal:

* With the “Poisson” process

Vriw; € Xomi Ayl —ayll 20 | o e

Vzi € X,YQ C Di s : N IR VS N an VIR
Area(2) K\ /4 |
Area (Dz 1 ) [ I ’7’/// ‘ ( \\\ //\’/ N

Ve € D,dx; € X :

P(x; € Q)=

|l — xs|| < r
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MPS a.k.a.

 Statistical processes

— Hard-core Strauss disc processes
* Non-overlap: inhibition distance r,
« cover domain: disc radius r,

 Nature

— Trees in a forest
» Variable disk diameter = tree size
* Points are tree trunks
» Disks are tree leaves or roots
— Given satellite pictures (non-maximal)
« How many trees are there?

« How much lumber? ..

“ /// /‘
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: British Columbia

« Random sphere packing
— Non-overlapping r/2 disks
— Atoms in a liquid, crystal
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Motivation from Static Graphics

 Stippling: images from dots, as newsprint
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(Brush) Stroke-Based Rendering

» CG artistic effect to mimic physical media
_* Images from Aaron Hertzmann, Stroke-Based Rendering

Source photo Painted version Final rendering

Definition: A stroke is a data structure that can be rendered in the image plane.
A stroke model is a parametric description of strokes, so that different parameter
settings produce different stroke positions and appearances.

For example, one form of stippling uses a very simple stroke model: 7?::;\\\ Vg 7 7:?? ///:Q \\\\ |' II‘/ ////::\\\\
” . () L) N

¢ ° N7 | AN—= N/ \\ T

® . S WS RN\

® ¢ ° msr72 NNl =7 f AN\

Stippling stroke model Individual strokes (stipples) |———o /"7 | \\oooed  |=——~"// ] |\\l \:_—:

Vector field Final rendering
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V
o mvating from Modern Graphics:

Texture Synthesis

* Real-time environment exploration. Games! Movies!
» Algorithm to create output image from input sample
— Arbitrary size
— Similar to input
— No visible seams, blocks
— No visible, regular repeated patterns

Spaghetti
Li Yi Wei

ex
X%, SIGGRAPH 2011

&~

regular near-regular irregular near-stochastic stochastic
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i /-} What is MPS good for?

« Humans are very good at noticing patterns,
even ones that aren’t there

— Patternicity: Finding Meaningful Patterns in
Meaningless Noise, Scientific American Dec 2008
— Cognition issues...side exploration
— Our eyes sensitive to patterns

— Randomness hides imperfections

 stare at dry-wall in your house sometime,
try to find the seams

— Unbiased process leads to points with

* No visible patterns between distant points.

— pairwise distance spectrum close to truncated
blue noise powerlaw
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, What is MPS good for?
- andia cares about Games and Movies? training...

* Physics simulations — why SNL paid for year 1-2 ©
* Voronoi mesh, cell = points closest to a sample

OO\

* Fractures occur on Voronoi cell boundaries [ .
— Mesh variation C material strength variation o

— CVT, regular lattices give unrealistic cracks
*Unbiased sampling gives realistic cracks

« Ensembles of simulations Fracture Simulations

. . ] _ . . Courtesy of
Domains: non-convex, internal boundaries Joe Bishop (SNL)
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g Algorithm for MPS

» Classic algorithm
— Throw a point, check if disk overlaps, keep/reject
— Fast at first, but slows due to smaII uncovered area left. —

Can’t get maximal.
Classic Dart Throwing

7000 100% 4 o
=y
6000 = /
" 80% 8 c
£ 5000 P A 1 \
6 4000 60% N A N\ ‘\
- =
o -
2 3000 40% 5
2 2000 & ©
20% £
1000 §
@ AN J/
0 0% & quadtree 57/
0 10000 20000 30000 40000 50000 60000 70000 —
Number of Darts Thrown advancing front

« Speedup by targeting just the uncovered area
— Others use quadtrees to approximate the uncovered area
— Others use advancing front to sample locally

— Others use tiles to aid parallelism
« Common issues = e

— Not strictly “unbiased” process

* Outcome may be indistinguishable from
an unbiased process’s outcome

— Not maximal: dependent on finite precision
— Memory or run-time complexity
— Ours is first provably bias-free, maximal, E(n log n) time O(n) space

\ /
\\\ ,,//

\\\\

~ independent tiles
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Algorithm

Initial Pool C

End of Phase I: white cells with a point

« Background square grid
— Square diagonal = r

* Flood fill

— Build pool of cells C:
not-exterior to domain

* Phase I: quickly cover most of
the domain

— Pick a square from pool
— Pick point in square
— If point uncovered (likely)

» Keep point
* Remove square from pool
— Repeat a|C| times o
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Algorithm

Start of Phase II: dark cells not-covered

« Target remaining uncovered area
Construct square \ disks
— Polygon easy surrogate for arc-gon

Replace pool of squares by polygons
Phase II: repeat
— Pick polygon from pool
+ Weighted by its area (only log n step)
— Pick point in polygon
— If uncovered
» Keep point
 Remove polygon from pool
« Update nearby polygons
Works well because
— Voids are scattered
— Small arc-gons are well approximated
by polygons ) e,

Laboratories
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. ’Algorithm Nuance - Phase |l stages

» “Algorithm is simple,... in a good way” - Reviewer
* Lazy update of polygons’ areas and pool, in “stages”

— More simple datastructures

— No tree needed, flat array for pool, fewer pointers
— Run-time proof gets more complicated

Prior slide

Lazy update

Phase II: repeat
Pick polygon from pool
Weighted by its area (only log n step)
Pick point in polygon
If uncovered
Keep point
Remove polygon from pool
Update nearby polygons

Phase II: repeat
Repeat clPooll times
Pick polygon from pool
Weighted by its area (only log n step)
Pick point in polygon
If uncovered
Keep point

New stage - update all polygons
Rebuild pool and weights
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Complexity Proofs Sketch

« WTS constant time & space per point S(
— Everything is local, and constant size I~

» #squares = B(#points_in_sample)
» Sid Meier Civilization template

— 21 nearby squares, 0 or 1 disks per square
* By geometry, < 4 voids per cell
* By geometry, <9 (8?) disks bounding a void

» Constant time to check if point is uncovered
* Polygons are constant size, time to build

Four voids

. ‘
(o, ¢ O
o, 0 ¢ {3 £ O
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<5 /-’ Complexity Proofs Sketch

« Constant work per generated point,
but what about the rejected (covered) points?

— Phase |, O(|C]) throws
— Phasel ll

Area(arcgon) > ¢ Area(polygon) < P(x, : uncovered) > ¢

< #accepted > ¢, #rejected

— Via weighted Voronoi cell of a circle
» Constant curvature and nu

/

er of edges

AN

o

e covered fraction of polygon

[ uncovered arcgon
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Fewer Rejected Points Later

* Polygons =» arcgon as voids get smaller

— We get more efficient (contrast) ey
Polygon & Arc-gon Void Area —
g @
< 2 098 9 & :l>
3 <3 -
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2 53 / / Q
T8 S 2
S 3 6 0.94 2 ' .
c o S =
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pi /-" Complexity

« Complexity — everything is local, all steps constant time

— except log(n) to select a polygon, weighted by area

— that is a relatively inexpensive step

— constructing geometric primitives is the expensive part
» Constant fraction of generated points are output points

Time=E(Cn+mnlogn)
Space=0(n)
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Runtime — Why we do Phase |

# Phase | Points or Voids

OE+0

[0]
o
1

(o))
o

Time (seconds)
D
o

N
o

0

0E+0 1E+6 2E+6 3E+6 4E+6 S5E+6 6E+6 7E+6 8E+6 9E+6 'I,‘ Sandia

Number of Points and Voids in Phase | vs. Il

Phase | Points =

* # Voids at Phase Il start 0.73 Total Points
B # Points in Phase |

—Linear (# Voids at Phase |l start)

—Linear (# Points in Phase |)

Initial Voids =
0.73 Total Points

* Phasel
— 73% of points

1 o .
OE+0  1E+6  2E+6  3E+6  4E+6  5E+6  6E+6  7E+6  8E+6 or+6  — 26% of runtime

Number of Points Generated (Phase | + 1l)

CPU Running Time * slight uptick from log

¢ Phase |
® Phase | + Phase Il
—Linear (Phase |)

93k points/s
trendline

—Linear (Phase | + Phase 1) 358k points/s

trendline

National
Number of Points Generated Laboratories




Serial Memory Use

Memory Use

2000 : Geometric polygons are
1800 - relatively expensive
1600 - Phase | i Phasel

= 1400 - 73% points L 27% points

S 1200 - 22% memoryi 78% memory

1000  26%time | 74%time

£ 80 |

Z 0
001 ! Saw-tooth from lazy
200 - update “stages”

’ 0 10 20 30 40 50 60 70 80

Time (seconds)
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- > GPU Algorithm

Points generated in parallel, conflicts resolved in an unbiased way
* Point buffers: candidate and final

 Phase |

— lterate: synchronize at start of iteration
» Generate |C|/5 candidate points

+ Square states: empty, test, accepted, done
— Done = Point from prior iterations
— Test = Point doesn’t conflict with nearby “done” points, compute in parallel
— Accepted = Point is earlier (id) than conflicting “test” points, compute in parallel

» Migrate accepted points to done, otherwise remove

 Phase ll

— Construct polygons, compute in parallel
« Squares “rejected” if covered by prior disks, has no polygon, no work to do
» Split polygons into triangles

— Proceed as Phase |, with triangles playing role of squares

Sandia
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GPU Performance

Time (seconds)

5 b L] L]
GPU Running Time
| |
4 1 e Pphasel
® Ph | + Ph 1
3 - _ asel+Fhase 224k points/s
—Linear (Phase |) trendline
> - —Linear (Phase | + Phase Il)
1,484k points/s
1 trendline
0 S e SRR ‘
OE+00 2E+05 4E+05 6E+05 8E+05 1E+06
Number of Points Generated

2.4x speedup over serial (6.7x memory bandwidth)
I million points in 1 GB RAM
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- Synopsis of Contribution

* Poisson-disk distributions
— Simple, efficient implementation
— Provable guarantees

« Maximal
 Unbiased
* O(n) space

« E(Cn+mnlogn) time
 Domains
- 2d
— Polygons with holes, non-convex
» Algorithmic innovations

— Two phases
|. fast to cover most of domain
Il. careful to cover remainder

— Approximate uncovered “voids”, square () circles,
with polygons. Careful weighting and selection
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2 ’ Future

 Extensions

— Could do away with polygonal approximation and weight and
sample directly — every dart is a hit! (w/ Thouis Ray Jones)

* Higher dimensions
— geometric primitives unappealing
— prefer just use hypercubes

* Thouis Ray Jones, jgt accepted paper
— model explicit time-of-arrival for each point
— synchronize locally as needed
— vs. unbiased by one dart at a time, inherently serial
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A Simple Algorithm for
Maximal Poisson-Disk Sampling
in High Dimensions

Mohamed S. Ebeida, Scott A. Mitchell, Anjul Patney,
Andrew A. Davidson, and John D. Owens

presenter = Scott
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Overview

\ - Classic Dart throwing + [Wei08] Wei L.-Y.: Parallel Poisson disk sampling.
( ° H _ Quadtree ACM Transactions on Graphics 27, 3 (Aug. 2008), 20:1-20:9.
\\ — Squares track remaining regions [BWWM10] Bowers J., Wang R., Wei L.-Y., Maletz D.:
] | . . - Parallel Poisson disk sampling with spectrum analysis on surfaces.
— Track misses for refinement decisions ey transactions on Graphics 29 (Dec. 2010), 166:1- 166:10.

v — Avoid refining too deep

“Make everything as simple as possible, but not simpler.” — A. Einstein

— Flat quadtree — one level of squares active, pool of indices
+ Simpler Datastructure © Less memory ©

— Globally refine periodically, ignore local misses
» Simpler Datastructure © More parallel ©

— Refine to machine precision,
on average it is so rare that memory is not an issue

* More Maximal ©

“This could be the current algorithm of choice for dart throwing.” —
Eurographics reviewer #2

Provable:

_ Code Works great but we Can’t Ebei('ia M. S.,.Patney'A., Mit.chell S. A., Davidson A., Knupp P. M., Owens J. D.:
Efficient maximal Poisson-disk sampling.

prove the spatial stats theory. ACM Transactions on Graphics 30, 4 (July 2011), 49:1-49:12 ﬂ" Sandia
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Maximal Poisson-Disk Sampling

* What is MPS?
— Dart-throwing
— Insert random points into a domain, build set X

Empty disk:

Bias-free:

Maximal:

* With the “Poisson” process

Vriw; € Xomi Ayl —ayll 20 | o e

Vzi € X,YQ C Di s : N IR VS N an VIR
Area(2) K\ /4 |
Area (Dz 1 ) [ I ’7’/// ‘ ( \\\ //\’/ N

Ve € D,dx; € X :

P(x; € Q)=

|l — xs|| < r
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> Algorithm for MPS

7000
6000
wv
£ 5000
I
6 4000
E 3000
£
22000
1000
0

Classic algorithm
— Throw a point, check if disk overlaps, keep/reject

— Fast at first, but slows due to small uncovered area left.
Can’t get maximal.

Classic Dart Throwing I
100%

80%

60%

40%

20%

Pecentage of Throws that Hit
[
|
T

0% AN TTTTIIT
0 10000 20000 30000 40000 50000 60000 70000 ~__ —r = L BN =
Number of Darts Thrown / [

» Speedup by targeting just the uncovered area | .

— Quadtrees to approximate the uncovered area
+ Discard covered squares . /
* Uncovered squares: a sample is always acceptable ~
» Partially covered squares: may need to refine

Sandia
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Our Algorithm - Basics

N

'* Refine all squares

« Datastructure:
* Squares contain uncovered area

“ * Throw darts

— Pick square, pick point in square
— If dart is outside nearby circles

» Accept dart as sample

* Delete square

— Discard subsquares covered by
single disks

* Repeat

Sandia
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Datastructure: Quadtree Root

) S]

uar

e diagona

| =

ipli

ng i

radius

\

/

—

» Squares sized so
\ — Can fit at most one sample

— Nearby square template for
“Point in disk?” conflict check

» Pointer from square to its sample

=

Unpublished extension: use kd-tree for proximity...
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4 /A’Datastructure: Flat Quadtree Leaves

Flat: Only one level iis  ° Pool of squares

used at a tlme — Global level i
— Squares that might accept a sample
0) 1 2 3 — Array of indices C

0 ¢

(0,0)

i=3

1 0,2) i.e. initial x 2

(0,3) squares per side
2 (1,1)

end
3
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- /-\,' Flat Quadtree Refinement

Update in place. c
++ (0.,0) l L]
0 1 2 3 0,2)
0,3) 1505 |
0
end (x,y)D{2x 2x+1}x{2y,2y+1}
(0,3)=>{(0,6) (0,7) (1,6) (1,7)}
1
2 end push x4
3 T
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Level Limit?

/& . one uncovered

/ D

\Q point

(or is 1t covered?
A / \, let’s look closer..

)

_— \\\

\
\\

|
/f‘

* Problem

— Small voids require infinite
refinement

 Solution: [Wei08], [BWWM10

— Stop early
to avoid memory blow-up

» Solution: Us
— Refine to finite-precision

— Small voids happen
rarely on average so

— Memory is fine in practice
— Benefit: maximal
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Algorithm — outer loop parameters

Al.go.r.itl?m 1 Simple M?S algorithm, CPU. Tunin g p arameter ChOiC es: A : B
3;::?;@ |g>’8:00’ ¢=9 ° = number initial cells
{throw darts} C' = number current squares

for all| A|C'| (constant) dart throws
select an active cell C. from C' uniform
if C¢’s parent base grid cell G¢ has a sample t

remove C! from C How many throws befor¢ refining?
else Throws =A [ C'|

throw candidate dart ¢ into Cé, uniform random
if ¢ is disk-free then
{promote dart to sample}
add c to G as an accepted sample p
remove Cé from C' {additional cells might be
covered, but these are ignored for now }

end f How big does array C need to be
end for to hold all the refined grid cells?

{iterate } C — B | COl

for all active cells C' do
if i < b|subdivide C. into 24 subcells
retain uncovered (sub)cells as citl
end for

increment i Big A €=»more time, smaller memory B

end While Sandia
r“‘ National
Laboratories




400 T

350 T

300 A

Run-time (seconds)
N N
o (O}
o o

[EY
ul
o

A (time) and B (memory) parameters

* Big A €=>more time, smaller memory B
— A=1, B=dimension. (A increases for d>4)
— Insensitive to value of A above a threshold

* Intuition: as classical dart throwing,
most hits happen early, no benefit to more throws

Time to Generate a Sampling in 2-d by Parameter A

coo
o oo

AA=0.38
BA=06
¢A=04

5 10 15
Number of output points (millions)

20

7000
6000

wv

£ 5000

I

G 4000

E 3000

£

3 2000
1000

0

25

Classic Dart Throwing
100%

80%
60%
40%

20%

Pecentage of Throws that Hit

0%
0 10000 20000 30000 40000 50000 60000 70000
Number of Darts Thrown
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200.00%

25.00%

3.13%

Icl/1G°]

0.39%

0.05%

0.01%

' Time and Memory

Experimental results

 Memory and time peaks in early interations

— Exponential convergence thereafter

— Log y scale

Ratio of Number of Active to Base Grid Cells

12

--2D
3D

4 8 12 16
Samples Accepted in Iteration i

as Fraction of Total Points, 2D

by Dimension

NN
NN

< ]
} 0.1000% =

\“3\ 0.0010% %

Iteration i

#boxes = time, memory,

Iteration i
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Time and Memory

vs. true quadtrees (Gamito), polygons (Ebeida 2D)
all linear in both, but constants matter

log-log scales

Time by Algorithm and Dimension
Our 4D
+ Gamito 3D

1024 Gamito 4D X

N

w1l

[e)]
1

()]
N
xI

Time (seconds)

16 7

Gamito 2D
Our 3D

Our 2D

@ QOur 2D

B Qur 3D

A QurdD
Gamito 2D

+ Gamito 3D

X Gamito 4D

. Ebeif:la ZD.

4 T T T T T T T T

0.01 0.04 0.16 0.64 2.56
Number of output points (millions)

10.24

40.96

2.56 7

0.64 A

Memory (Gb)

0.16 T

0.04

Memory by Algorithm and Dimension

Our 4D Our 3D

Gamlti) 3D Gamit

Our 2D

Gamito 4D X

¢ Qur 2D

M Our 3D

AQur4D
Gamito 2D

+ Gamito 3D

X Gamito 4D
Ebeida 2D

0.04 0.16 0.64 2.56
Number of output points (millions)

0.01 10.24 40.96

Memory savings from simpler datastructure

Time savings from that + simpler/fewer checks
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Time (seconds)

Time and Memory Theory

* Run-time
— Practice: linear in #points, grows by dimension
— Proof: not available
« Spatial statistics, expected area fraction of cells? And where?
 Memory
— Linear in #points
— No dynamic memory allocation

Time Memory
2000 7 AO'TJ‘:%T'“"E by Algorithm and Dimension 2 7 Memory Consumed by Algorithm and Dimension
1.8 - Our 2D
1600 A ]
¢ Our2D 16 Gamito 2D
“+ Gamito 3D HOur3D 1.4 1
1200 3 Gamito 4D A Our4D 51'2 i
Gamito 2D g‘ 14 ¢ Our2D
. £ 1 B Our 3D
800 - Gamito 2D T Gamito3D g g | AOur 4D
X Gamito 4D
Our 3D Ebeida 2D 1 Gamito 2D
400 eiea 0.4 + Gamito 3D
Our2D 4, X Gamito 4D
' Ebeida 2D
0 = 1 0 T T T T 1
0 5 10 15 20 25 0 5 10 15 20 25

Number of output points (millions) Number of output points (millions)
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* Rejection sampling is great on a GPU
— Nothing to communicate for a dart miss!

* 10x speedup on NVIDIA GTX 460
— Memory-limited to 600k points 2d, 200k in 3d
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anisotropy

S~

‘ Point Cloud Quality?

Provably correct bias-free, maximal up to precision

frequency

confirm
(GPU)

power

Experiments ./

0.5F

L L 1 L L L
180

s 1 s s s PR s s
360 540

" 72'0@

frequency
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« MPS Maximal Poisson-disk sampling
— Simpler, faster, less memory
— Three simple ideas
* Flat quadtree
» Constant # throws / ighore misses
* Global refinement
— CPU and GPU

Reviewer #0: “The paper is yet another one about faster Poisson-sampling,
but I see that it is significantly faster, uses less memory, is just simpler,
easier to implement, and works well for higher dimensions.”

Conclusions

* Future, dimensions > 47
— Not so great, quadtrees too big
 Two bonus thoughts...

UCDAVIS

UNIVERSITY OF CALIFORNIA

Sandia
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Bonus thoughts

A

* Definition of desired result vs.
process to obtain it (e.g. algorithm)

* Which would you rather have?

Sandia
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Laboratories




>

- Bonus thoughts

 Trick question!
* E.g. sorted order vs. bubblesort process
* Ax=b vs. Gaussian elimination

A definition of desired output enables the
discovery of new means to obtain it.

Sandia
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« Unbiased as a description of (serial) process
— insertion probability independent of location

“Unbiased” Opinion

P(x, €Q) x Area(Q2)

* Unbaised as a description of outcome
— pairwise distance spectra, blue noise

Radial Mean Power

Radial Anisotropy

PSA code great
for standard
pictures

P
Anisotropy (dB)
|

uuuuuuu

S - 200 200 600
Frequency Frequency

* Unbiased process leads to unbiased outcome,
but so might other processes

— Opinion: need something beyond “viewgraph norm”
— Need metrics for “how unbiased is it”

» Define spectrum S that is the limit distribution of unbiased sampling, and
standard deviations.

Sandi
« Our process generated S’, and |S-S’| < 0.4 std dev (S) ﬂ'l [ialil?‘lgafcllries
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Meshing and Triangulation Background

Connect those sample points!

Sandia
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Meshing and Triangulation

— Fixed input point positions

* Triangulating: point cloud -> triangles

* Meshing: boundary representation -> points and triangles

— freedom to put the points where you want
— Subdivide input curves into edges, surfaces into triangles
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" /-} Delaunay Triangulation

« Special role for both triangulating and meshing
* Given 4 points, two choices of diagonal edge

 Maximizes minimum angle

* For more than four points, can check/flip Ic ieve'global
lexicographic max min angle

Sandia
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Voronoi Diagram

=

* Region closer to that vertex than any other

perpendicular
bisectors

« Voronoi vertices are (locally) furthest domain points
from any black point

Sandia
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- O
* Quick Quiz

 Which came first,
— Delaunay Triangulation or Voronoi Diagram?

Sandia
r“‘ National
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X 4

- Voronoi Diagrams

e Descartes 1644
— quadratic forms

« John Snow 1854

— Broad Street pump, Soho, cholera
— Data outlier

* Boris Delaunay 1934 paper

Sandia
r“‘ National
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Quick Quiz

 What does this, the most famous multidimensional display
diagram in history, have to do with it?

Hint, how do you pronounce “Delaunay?”
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-~ Voronoi-Delaunay People

* Georgy Voronoy, 1908
- Boris Delaunay, 1934 paper, lived 1890-1980

 Both Russian citizens and published in French

— Advisor and student, Delaunay named Voronoi
diagrams after his advisor who worked on them

— Mountain climber (top 3 in Russia)
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Efficient and
good

Delaunay
meshes from
random

e Efficient and good Delaunay meshes from
M8 Eicids random points

M. S. Ebeidal, S. A. Mitchell!, Andrew A. Davidson?,
Anjul Patney?, Patrick Knupp! and John D. Owens?

1Computing Research, Sandia National Laboratories

2Electrical and Computer Engineering, UCDavis

10/24/2011

M. S. Ebeida et a.l Efficient and good Delaunay meshes from random points



Angles in DT of MPS

Random placement avoids structure, but plays no role in quality guarantees
DT of maximal Poisson-disk sampling or any sphere packing

Separated-yet-dense
— Every domain point is covered by a disk,
in particular every circumcenter

+ Circumcircle radius is at most the disk radius,
recall circumcenter is a farthest point from a vertex

* Longest edge is at most the circumcircle’s diameter, |e| < 2R
— No disk contains another point

+ Shortest edge (nearest neighbor distance) is at least disk radius, |e| 2 R
— Central Angle theorem, ancient Greek

« sinaz2|e|/2R a
— a2 30° (hence a =120°)

180° .
uf'q'| 2a w

b ) e,

Laboratories
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* Prior proof assumed entire plane covered by disks

 What about the domain boundary?
— Need to represent it: need to subdivide it into edges (2d, 3d...)

DD

Randomly sample in 1 less dimension
Easy to get distances in [R,2R]

Boundary Pre-Processing

Sandia
r“‘ National
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;/-’ Boundary Sampling

* For edges in [sqrt(3) R, 2R], a sample on the
surface could be too close, small & large angles.

-2 \r

* Solution 1: sample boundary with R’ = sqgrt(3)/2 R
— Expand all disks to R before sampling interior.

interior

# / ' \
| 7 ’ ’l -.Ill
" \ ' [ ] ‘ /domain interior
long edge /| domain exterior
—120° circle ﬂ-‘ National
' Laboratories




Boundary Sampling

« Solution 2.
— Sample bdy with R-disks.

— Sample interior near bdy

- Sample within R of boundary-circle intersection,
outside 120° circle (it will cover all of Vtqn)

— Sample rest of interior.

interior disk centers

Sandia
r“‘ National
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Example meshes
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Example Meshes




Efficient and
good
Delaunay
meshes from
random
points

M. S. Ebeida
et a.l

How does Maximal Poisson-disk sampling affect
meshing algorithms?

Delaunay Edge length

bounded between r
and 2r

Connectivity can be
retrieved locally

Linear time
complexity

Easier parallel
Implementation

Nice distribution
almost independent
of the domain / no.
of points

M. S. Ebeida et a.l
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Efficient and good Delaunay meshes from random points



How does Maximal Poisson-disk sampling affect
meshing algorithms?

Efficient and
good
Delaunay
meshes from
random
points

Moreover

: e Angles between 30° and
M. it I;l-)lelda 1200

e Nice distribution almost
independent Of the domain 30-40 40-50 50-60 60A-;:IeRa7:g—:(0degr::;)90 90-100 100-110
/ no. of points

Percentage of angles in that range

110-120

30%
En=1E6

e Easier handling of
constrained input.

Percentage of angles in that range

e Communication is only
required in Case Of . 30-40  40-50  50-60 6:::,&R::;esfdeg::s')% 90-100 100-110 110-120
non-unique solutions.

M. S. Ebeida et a.l

Efficient and good Delaunay meshes from random points ]
8 %J iaboratories




Angle Distribution Edge Length Distribution

——Internal Triangle Angles ——Internal Edges
—Boundary Edges

——Boundary Triangle Angles

25 35 45 55 65 75 8 95 105 115 125 08 09 1 1.1 12 13 14 15 16 1.7 1.8 19 2
Angle (bin min degrees) Length Edge Ratio to r (bin min)
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Efficient and
good
Delaunay
meshes from
random
points

M. S. Ebeida
et a.l

1. An Indirect method using a novel CDT
algorithm (SIAM-GD 2011)

/ \\///\v ul b /I ,Xb N / _ b I’ _A
AN B AR . i
ERY AN L A
d k\\z X \\R/ \}\/ g\é\\‘l/
¢ .10 £ . 10 ¢ . 10 h . 110

We were able to process 1 Million points in 2.7 seconds using a
modern laptop.

M. S. Ebeida et a.l

Efficient and good Delaunay meshes from random points




Notre Dame de Paris, Gargoyle, by FreiGurita (1968)

+two other 2011 papers

Uniform Random Voronoi Meshes

Mohamed S. Ebeida & Scott A. Mitchell (speaker)

20t International Meshing Roundtable
Paris, France

VAN P!Q‘g for the United States Department of Energy’s National Nuclear Security Administration Mational

TR T =32 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia
e ——" under contract DE-AC04-94AL85000. Lahoratories;



Summary

« Random Polyhedral Meshing

— Generate random points using the maximal Poisson-disk process
+ Points placed on reflex boundary features, but not concave or flat features
* Contrast to primal methods

— Symbolically split points (not in paper)

— Construct Voronoi cells

* Bounding box, cut by boundary and Voronoi planes
— Bounding box works because cells have bounded size
+ Small edges collapsed

* Get
— Voronoi mesh of convex polyhedral cells
— Bounded cell aspect ratio and facet dihedrals

— Random orientation of mesh edges
* Needed for fracture mechanics where cracks are restric



'

S

= _Maximal Poisson-Disk Sampling (MPS)

* What is MPS?

Empty disk:

Bias-free:

Maximal:

> — Dart-throwing
Q E?r%— Insert random points into a domain, build set X

* With the “Poisson” process

Vriw; € Xomi Ayl —ayll 20 | o e

Vzi € X,YQ C Di s : N IR VS N an VIR
Area(2) K\ /4 |
Area (Dz 1 ) [ I ’7’/// ‘ ( \\\ //\’/ N

Ve € D,dx; € X :

P(x; € Q)=

|l — xs|| < r

Sandia
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Statistical Process # Algorithm

7000
6000
[7,]
£ 5000
I
© 4000
]
2 3000
3 2000
1000
0

Classic Dart Throwing

100%

\ | 80%

\ - 60%

X

/ \ - 40%

/ \ - 20%

Pecentage of Throws that Hit

——

T T T T T T O%
0 10000 20000 30000 40000 50000 60000 70000
Number of Darts Thrown

Algorithm progress

sliver regions
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icient maximal Poisson-disk sampling”

First provably correct, time- space-optimal algorithm.

Mohamed S. Ebeida, Anjul Patney, Scott A. Mitchell,

Andrew Davidson, Patrick M. Knupp, and John D. Owens.

ACM Transactions on Graphics (Proc. SIGGRAPH 2011), 30(4), 2011.

¥ Background grid of squares (cubes...) for locality

o Everything is O(1) Sania

Sid Meier’s Civilization Template

National
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icient maximal Poisson-disk sampling

/

— Phase ll

0 0 » Algorithm Bias-free: Ve, € X,VQ2 C D;_1:
without selecting from
— Phase | entire domain P (2 0) = Area(Q)
1 { Throw darts in squares (wi € Q) = Area(D;_1)
* Pick square uniformly |
£ £ |
5 * Pick point in square uniformly

Throw darts in polygons Dslivers

Number of Voids

log,, scale

O = N W & U1 O

]

4 d * Pick sliver weighted by area
» Pick point in sliver uniformly /
O o
/.
]
/

| 7 \\
Voids Covered per Stage ! o N
g o] /
Q
Ml |nvalidation Ratio - 08 o \
-=-Number of Voids 5 & hit miss
O ©
- 06 5% E(n) throws proof idea
0.4 S § * Hit/miss ratio =
k) 5 Voronoi cell area ratio >
L 02 _§ < constant.
I I I I I i s In practice, use flat implicit
3 L - -
‘ ‘ | | =0 octree in d>2 Sandia
5 10 15 20 25 ) hatora

Phase Il Stage

Laboratories



riangular
Meshes

“Efficient and good Delaunay meshes from random points.”

Mohamed S. Ebeida, Scott A. Mitchell, Andrew A. Davidson, Anjul Patney,
Patrick M. Knupp, and John D. Owens.

Computer-Aided Design, 2011. Proc. 2011 STAM Conference on
Geometric and Physical Modeling (GD/SPM11).

* Reverse cause-effect
— Delaunay Refinement:

Insert circle-centers to kill large Delaunay circles

* Maximal sample results

— MPS: Insert points randomly to maximally sample

+ Small Delaunay circles result

— Nearly identical angle bounds either way
* Delaunay circle-centers can be ignored!

Angle Distribution

——Internal Triangle Angles
——Boundary Triangle Angles

55 65 75 8 95 105 115 125
Angle (bin min degrees)
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Cover the boundary

with random disks
interior disk centers
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+ Simple algorithm for covering the boundary randomly

— Complicated geometric proof
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fficient” for MPS, scales great,
but how fast?

* Delaunay refinement
— Points from deterministic process - fast
« MPS
— Points from strict unbiased random process — slow

* But once points are generated we’re as fast as Triangle, and
our GPU code is 2x faster

25 1

CDT & MPS Runtime MPS serial
i 1 100k p/s
o | Serial - GPU - Triangle

)
e
8 15
2
°g’ w4 & e MPS GPU (est)
N CDT serial

I I 374k p/s

____________________ Triangle pOint generatioll (eStimate)
o meE ot te oo T

0.0 0.5 1.0 1.5 2.0 2.5

Points (millions) ﬂ'| ﬁaa?igi:al
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* Fracture mechanics simulations
* Fractures occur on Voronoi cell boundaries
—Mesh variation C material strength variation ;>\
- Ensembles of simulations —
—Unbiased sampling gives realistic cracks
* Edge orientations are uniform random

« Domains: non-convex, internal boundaries

What is MPS good for?

raears

Fracture Simul

Impact

Joe Bishop, SNL org 1500
Fracture simulation

Need random meshes because

cracks are along edges %Qég g@% b0
b &4 S boe

eeaavatA Sasss:

Lot
L]

ation

Courtesy of
Joe Bishop (SNL)

p==

oy <.

QL
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National
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2 <o’ Alternatives

* Voronoi Mesher
— CVT Centroidal Voronoi Tessellation
» Seed = cell’s center of mass
* Via iterative adjustment of seed location

 Good shaped cells, but “biased”, regular mesh

» Target app: fracture simulations with fracture along
mesh edges

* Primal meshers

— Miller: maximal disk packings for bounded edge-
radius tet meshes

— Shimada and Gossard Bubble meshes
* Force network, insertion and removal

Sandia
r“‘ National
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IMR paper algorithm!

« Random Polyhedral Meshing

— Generate random points using the maximal Poisson-disk process
+ Points placed on reflex boundary features, but not concave or flat features
* Contrast to primal methods

— Symbolically split points (not in paper)

— Construct Voronoi cells

* Bounding box, cut by boundary and Voronoi planes
— Bounding box works because cells have bounded size
+ Small edges collapsed

* Get
— Voronoi mesh of convex polyhedral cells
— Bounded cell aspect ratio and facet dihedrals

— Random orientation of mesh edges
* Needed for fracture mechanics where cracks are restric

A
P> ;
\ T S /
AT




Boundary Sampling

« Maximally sample

— Points interior to domain, not on boundary...
..unless we have to:

X
interior-seed

fringe-seed

edge-seed
» Reflex features require special care, not sharp ones border edge
— “Reflex” includes 2-sided facets reﬂexyt;oundary edge
* Not the dual of a body-fitted primal mesh
— Better (not constant 90°) dihedrals at boundary
» Goal: cells align with boundary features, cells are convex

» Sufficient: every point on a reflex face is closest to a sample from that
reflex feature (or sub-facet)

— 8qrt(2) denser sampling on reflex feature F=r
X X X ‘ J2
xx ¥

domain
interior

X

height = \/r* -7

domain =27 1f r,= r
interior
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Bonus: Convex Cells
aper: star-shaped cells at reflex faces

 Clipping by boundary
— By prior page only non-reflex (convex) boundary
features affect interior samples

— Intersection of convex Voronoi cell w/ convex
boundary = convex clipped cell

« Symbolic duplication of reflex samples

>




Voronoi Quality

* Provable facet dihedral angle bounds
* Provable cell aspect ratios

Sandia
r“‘ National
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_
__ Quality proof idea
, . . _ Area(Q2)
Bias—free-cDr—i—RLip—c— e
Area(D;_1)

Empty disk: Vo, x5 € X, 9 # j @ ||z — ]| >
Maximal: Vp € D,dx; € X : |[p —x;|| < r

(1b) Voronoi:
(1c) Vi={p} € D:Vj,|lp—zil| < |lp — ]|

— “Maximality” bounds the maximum distance from
Voronoi cell seed to its vertices
= Delaunay vertex to circle center

— “Disk-free” bounds the minimum distance between
two seeds

= a Delaunay edge :
yedad Delaunay triangle angles:

Voronoi facet dihedral angles: p

[ )
—L g u 1_8090 2a) w

b
(b) Central Angle Theorem.

as Chew 89 h {%:a.u“dmt!.es




V
., € Aspect Ratio Proofs

> (star-shaped cells)

* Aspect ratio
— Circumscribed sphere radius < r (from maximality)

— Inscribed sphere radius > some factor r (from disk-free)

If cell is interior: r/2

r4
r2
\ %1 /

Clipped by one facet: r/4 Facets of one edge Facets of one vertex

Disjoint facets: feature size fs

A= 4max(\/§,r/fs)max(1,1+Smw)

2sin

Sandia
r“‘ National
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Interior cells

800 _ -
Interior InRadius
2 600 A‘/\/\VA
2 / W\\
O
[T
(@]
T 400
o)
&
=
< 200
O - | ~I | | | | | | | | | | | I‘AI | | |

0.35 037 039 041 042 044 0.46 0.48
Ri/r

0.50 0.52
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} Interior cells

1000

AN\ Interior OutRadius

R
/

600

|
NI
S

O | | | | | | | | | | | | | | | | | |

0.58 0.62 0.65 069 0.73 0.76 080 0.84 0.88 0.91
Ro/r

Number of Cells
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1000

800 /\A\/‘
A

Interior Cell Aspect Ratio

N
" N

1.40 151 161 1.72 183 193 2.04 2.15 2.25 2.36
Aspect Raio Ro/Ri

Number of Cells
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1000

800

600

400

Number of Cells

200

0

bserved A<

4max(\/§,r/fs)max 1,

1+smnw

28w

Aspect Ratio
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ﬁgﬁmmdius
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W\ Interior OutRadius

NEA .
f o // \\ outradius
200 [ \\\M\/M

058 062 065 069 073 0.76 0.80 0.84 0.88 0091

N
// \ A = inradius /
/ outradius
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Interior Cell Aspect Ratio

star-shaped cells
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o o o
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Quality plots
Dihedral Angles

1200

24000

1000 Border-Interior g} we ?lamplled all d(l)glsmggic;zoo Interior-Interior
- enattangles would be :
- Facet Dihedrals g " Facet Dihedrals
3 800 & 16000
kS S
5 600 5 12000
£ £
S 400 S 3000
> >
200 4000
0 0
44 54 64 75 8 |95 105 116 126 - 44 57 69 146 158

Dihedral Angle (degrees)

provably €30°,150°| near one border facet provably & [60°,150°]

provably €[20.7°,159.7° ] otherwise

Recall proofs idea:
Distance from seed to
cell vertex bounded above by maximality
cell facet distance bounded below by disk-free

Dihedral Angle (degrees)
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- Quality: what’s missing?

Work in progress:
* Short edges

— Collapsed, leading to non-planar faces

— OK for Joe Bishop fracture simulation but not ideal
* Voronoi facet aspect ratio bounds

— Smoothing or sample insertion constraints may fix

« 90° facet dihedrals between samples on reflex
faces. (Recall no samples on other faces)

— Small random perpendicular offsets may fix

Sandia
r“‘ National
Laboratories




,-o’ Conclusions

- w/ Patney, Davidson, Owens (UC Davis)
* w/ Knupp, Bishop, Martinez, Leung (SNL)

« 1. Maximal Poisson-disk sampling point clouds

* Essence: First provable maximal, bias-free,
O(n) space, E(n log n) time

* Impact: Graphics hot topic (texture synthesis).

Ensemble calculations for V&V

2. Triangular meshes

+ Essence: Provable quality bounds from
random points

* Impact: Seismic simulations

3. Voronoi meshes

+ Essence: NOT the dual of a boundary-fitted
triangulation
* Impact: Fracture simulations

Efficient Maximal Poisson-Disk Sampling.
Ebeida, Patney, Mitchell, Davidson, Knupp & Owens.
SIGGRAPH 2011. ACM Transactions on Graphics.

Efficient and Good Delaunay Meshes From Random Points.
Ebeida, Mitchell, Davidson, Patney, Knupp & Owens.

SIAM Conference on Geometric and Physical Modeling.

J Computer-Aided Design special issue.

Uniform Random Voronoi Meshes.
Ebeida & Mitchell.
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- Community should consider using maximal samples for
mesh points... even if Poisson-disk process isn’t important
- Better sizing control.
- Never O(n?)

- To do: study element count and grading vs. Delaunay refinement.




What is the real goal?

 Classic MPS - a lot of effort to get maximal

. Two-radii MPS, in CCCG
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A

Hierarchical by shrinking radius

Dlscret.

(a) t =0.8 end (b) t = 0.6 start ) t =0.6 end

Coverage radius (blue) larger
than inhibition radius (red)
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How fast can it vary?

}’

» Shrink too fast, number of neighbors is unbounded
— Infinite run-time
— Zero angles in triangulation Z——\
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How fast can it vary?

Distance Order Full Conflict Edge Edge Sin Angle Max
Method Function Independent Coverage Free Min Max Min L
Prior r(x) 1no no 1no 1/1+L) 2/(1-2L) (1-2L)/2 1/2
Current r(y) no no no 1/1+L) 2/(1—-L) (1-1L)/2 1
Bigger max (r(x),7(y)) yes no yes 1 2/(1—-2L) (1-2L)/2 1/2
Smaller  min (r(x),7(y)) yes yes no 1/1+L) 2/1-L) (1-1L)/2 1

Where L is Lipschitz constant: f(x)-f(y) < L |x-y|
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